145 research outputs found

    Montefiore Medical Center: Integrated Care Delivery for Vulnerable Populations

    Get PDF
    Describes a system of hospitals and community- and school-based clinics tailored to low-income patients through systemwide strategies, high-quality specialty and hospital care, and integrated care delivery via care management and information technology

    Rhode Island Quality Institute: A Statewide Partnership to Improve Health Care Quality

    Get PDF
    Describes the first state-initiated public-private partnership for quality improvement and the establishment of an independent nonprofit organization to coordinate efforts. Examines elements of success, including leadership structure, and lessons learned

    Advancing Patient Safety in the U.S. Department of Veterans Affairs

    Get PDF
    As part of a systemwide transformation, the VA formed its National Center for Patient Safety to foster an organizational culture of safety within its nationwide network of hospitals and outpatient clinics. A recent medical team training program designed to improve communication among operating room staff was associated with a reduction in surgical mortality and improvements in quality of care, on-time surgery starts, and staff morale. The program is now being expanded to other clinical units, along with a patient engagement program that prevents errors by facilitating communication relating to patients' daily care plans. A recognition program stimulated facilities to conduct timelier and higher-quality root-cause analyses of reported safety events to identify stronger actions for preventing their recurrence. Other initiatives have reduced rates of health care -- associated infections, patient mortality, and post-operative complications. Success factors include leadership accountability for performance and organizational support for testing, expanding, and adopting improvements

    Metropolitan Wi-Fi Research Network at the Los Angeles State Historic Park

    Get PDF
    UCLA is deploying a metropolitan-scale Wi-Fi mesh network near Downtown Los Angeles. It supports research in community-based urban participatory sensing, which focuses on how people can use their everyday mobile phones as sensors for data gathering on personal, community, and urban scales.  Moreover, we will use it to explore Cultural Civic Computing, a service-oriented urban computing model in which neighborhoods power the processes of imagining, specifying, and designing technology infrastructure for public places. This work provides infrastructure with which to explore the potential that a large scale Wi-Fi deployment offers multicultural communities in investigating and reclaiming their own environments, and creating healthy and livable cities.  It also enables public exploration of creativity and cultural identity, as well as the diverse histories of our cities and neighborhoods

    E. coli O157 on Scottish cattle farms: evidence of local spread and persistence using repeat cross-sectional data

    Get PDF
    <b>Background</b><p></p> Escherichia coli (E. coli) O157 is a virulent zoonotic strain of enterohaemorrhagic E. coli. In Scotland (1998-2008) the annual reported rate of human infection is 4.4 per 100,000 population which is consistently higher than other regions of the UK and abroad. Cattle are the primary reservoir. Thus understanding infection dynamics in cattle is paramount to reducing human infections.<p></p> A large database was created for farms sampled in two cross-sectional surveys carried out in Scotland (1998 - 2004). A statistical model was generated to identify risk factors for the presence of E. coli O157 on farms. Specific hypotheses were tested regarding the presence of E. coli O157 on local farms and the farms previous status. Pulsed-field gel electrophoresis (PFGE) profiles were further examined to ascertain whether local spread or persistence of strains could be inferred.<p></p> <b>Results</b><p></p> The presence of an E. coli O157 positive local farm (average distance: 5.96km) in the Highlands, North East and South West, farm size and the number of cattle moved onto the farm 8 weeks prior to sampling were significant risk factors for the presence of E. coli O157 on farms. Previous status of a farm was not a significant predictor of current status (p = 0.398). Farms within the same sampling cluster were significantly more likely to be the same PFGE type (p < 0.001), implicating spread of strains between local farms. Isolates with identical PFGE types were observed to persist across the two surveys, including 3 that were identified on the same farm, suggesting an environmental reservoir. PFGE types that were persistent were more likely to have been observed in human clinical infections in Scotland (p < 0.001) from the same time frame.<p></p> <b>Conclusions</b><p></p> The results of this study demonstrate the spread of E. coli O157 between local farms and highlight the potential link between persistent cattle strains and human clinical infections in Scotland. This novel insight into the epidemiology of Scottish E. coli O157 paves the way for future research into the mechanisms of transmission which should help with the design of control measures to reduce E. coli O157 from livestock-related sources

    High prevalence and factors associated with the distribution of the integron intI1 and intI2 genes in Scottish cattle herds

    Get PDF
    Integrons are genetic elements that capture and express antimicrobial resistance genes within arrays, facilitating horizontal spread of multiple drug resistance in a range of bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3 integrons in Scottish cattle and examine whether spatial, seasonal or herd management factors influenced integron herd status. We used fecal samples collected from 108 Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015, and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2, and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1 as 76.9% (67.8–84.0%) and intI2 as 82.4% (73.9–88.6%). We did not detect intI3 in any of the herd samples tested. A regional effect was observed for intI1, highest in the North East (OR 11.5, 95% CI: 1.0–130.9, P = 0.05) and South East (OR 8.7, 95% CI: 1.1–20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was used to test for potential associations between herd status and cattle management, soil type and regional livestock density variables. Within the final multivariable model, factors associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95% CI: 1.1–36.4, P = 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI: 1.3–14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0, 95% CI: 10.4–540.5, P < 0.001). This study provides baseline estimates for integron prevalence in Scottish cattle and identifies factors that may be associated with carriage that warrant future investigation

    Phylogenetic relationship and virulence composition of Escherichia coli O26:H11 cattle and human strain collections in Scotland; 2002-2020

    Get PDF
    O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002–2004 and 2014–2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections
    • …
    corecore